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Abstract. We present local-spin-density-functianal calculations for the interaction energies 
ofvacancieswith3dand4spimpuritiesinCuaswellaswith4dand5spimpuritiesinAg.The 
calculations arebasedon the jellium model theop,thusenabling 
aninterpretationof the interaction in purelyelectrostatic terms. The results are in agreement 
with those obtained by first-principles calculations and confirm the experimentally known 
trends. 

1. Introduction 

The interaction of point defects with vacancies in solids is an active area of theoretical 
andexperimental investigations because it is important for the understandingofdiffusion 
in dilute alloys. 

Calculations dealing with the solute-vacancy binding energy in simple metals have 
been performed first by Lazarus [ I ]  and Le Claire [2]. They considered the noble metals 
within the jellium model and employed the Thomas-Fermi approximation to describe 
the screening of the impurity. 

As an improvement to this approach, Blandin and co-workers [3] and Gupta [4] have 
taken into account the oscillatory behaviour of the screening, using the asymptotic form 
of Friedel [5] oscillations determined by some reasonable assumptions for the impurity 
phaseshifts. Theirresultsforthesolute-vacancyinteractioninnoblemetal hostsroughly 
reproduce the experimental trends. 

Subsequent calculations based on pseudopotential theory [6 ,  71 have a restricted 
rangeofapplicability. Apartfrom the fact that the pseudopotential method isapplicable 
only to simple metal solutes in simple metal hosts, the results obtained are very sensitive 
to the choice of the pseudopotential. Application of this method even to impurities with 
a small valence difference seems to be problematic [7], and even more so the treatment 
of vacancies [SI. 

Calculations performed within the framework of the tight-binding method [9] had a 
limited success. Despite the fact that this method enables physical insight into various 
electronicstructureproblems. it is restricted to transition metals. Moreover, the method 
contains a number of adjustable parameters which are difficult to determine. 

Recently, Klemradt er a1 [lo, 111 reported an extensive study of the solute-vacancy 
interaction by performing ab initio total energy calculations for various impurity- 
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vacancy complexes in Cu, Ni, Ag and Pd hosts using the Korringa-Kohn-Rostoker 
(KKR) Green function method, 

In this paper we show that the jellium model together with first-order perturbation 
theory can indeedexplain the trends for the interaction energies in noble metal hosts and 
gives results in agreement with the results of ab initio caIculations and with experimental 
data, provided that the calculations are performed accurately and consistently. The 
satisfactory results found in earlier jellium calculations [ I 1 1  are more or less accidental 
and due to error cancellations of the different unreliable approximations involved. 
Because of the simplicity of the model we can readily gain physical insight of the solute- 
vacancy interaction. 

2. Calculational method 

We first consider a substitutional impurity in a simple metal. The band-structure effects 
associated with the host matrix are ignored and a jellium of appropriate density 
p = 3Zo/4xr: is introduced. 2, is the valence of the host, being equal to unity if we 
consider the noble metals (Cu and Ag in this work) as jellia and r, is the radius of the 
host atomic sphere. In this paper, Rydberg atomic units are used. 

The substitutional impurity of atomic number Z,,, = 2, + A 2  is embedded in a 
spherical hole of radius r, in the positive background density. The spherically symmetric 
perturbing potential is considered to extend up to a distance S around the impurity, 
taken at the origin of coordinates. For a given spherically symmetric total electron 
density 

p ( r )  = C p0(r) (1) 
0 

wherep,istheelcctrondensityforaspindircctiono, theone-electroneffective potential 
is written within the framework of density-functional theory [12] as 

v , ( r )  = V,Idr)} + V x c , o b k ) l .  (2) 
V,is the potentialenergy of an electron in theelectrostatic fieldcreated by the totalcharge 
distribution within a sphere of radius S around the impurity. An explicit expression for 
V ,  has been given in a previous paper [13], The term describes exchange and 
correlation effects, which are taken into account through the local-spin-density approxi- 
mation of von Barth and Hedin [14] with the parametrization proposed by Moruzzi era1 

We employ the frozen-core approximation according to which the core electron 
densityp,(r)isequal to that ofanisolatedimpurityatom. Theelectrondensityassociated 
with thc valence states, which extends from a lower value E,nf to the Fermi level E, and 
includes possible shallow bound states, is calculated from the Green function 

1151. 

AG is the difference between the Green function of the embedded impurity and that of 
the unperturbed jellium. It is written as vz l m Y X  

AGV,&, r ;  E )  = - C (21 + 1)[&,&; E)H,,o(r; E)  - "%p'W. (4) 4x / = o  

&,and Ht,o are, respectively, the regular and irregular solutionsof angular momentum 
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quantum number [of the radial Schrodinger equation for the potential V,. Their asymp- 
totic expansions outside the sphere of radius S are given by 

where h,  3 y ,  - V I .  Here j l  and y ,  are the spherical Bessel functions of first and second 
kind, respectively (161, andr,,,is the usual scattering t-matrixassociated to thepotential 
V,. The use of the perturbed Green functiongiven by equation (4) allowsone toconsider 
a relatively restricted basis in the angular momentum expansions even at large distances 
r. Indeed, an angular momentum cut-off lmax = 3 is usually sufficient to obtain good 
convergence, 

Equations (2-4) are solved iteratively, using the Chebyshev iteration scheme [17]. 
Moreover, the use of the complex energy integration technique [18] accelerates con- 
siderably the numerical calculation. 

The total neutrality of the system jellium + embedded impurity is described by 
Friedel's [SI sum rule 

A 2  Zimp - 1 = -E (21 + ~ ) ~ I . ~ ( E F )  (7) 

!!.,(E) = -(I/*) sin 6 d E )  exp[i6,,(E)I 

n 0 I=O 

where are the scattering phase shifts, related to the t-matrix through 

(8) 
with the boundary condition 61,0(-=) = 0. 

then to first order in AZ' the interaction energy with the impurity is given by 
If one inserts a point charge A 2  into the jellium at adistance R, from the impurity, 

Ein, = AZ' AVM (IR,, I). (9) 
Here AVbf denotes the difference between the electrostatic Madelung potential due to 
the single impurity in  jellium and that due to a host atom treated as an impurity in the 
same jellium, i.e. a Cu impurity in a Cu jellium, which serves as the reference host 
system. Equation (9) with AZ' = -1 has been used in the past [1-4] to calculate the 
interaction with a vacancy in noble metals. However, this formula is not consistent with 
the description of a vacancy in the jeilium model and our calculations show that the 
results derived from it do  not agree well with experiment and with the KKR calculations 
[lo, 111. Since by creating the vacancy the positive background charge is removed from 
the atomic sphere of volume S2 centred at R,, one has to average the impurity-induced 
potential AVM(lr  + R,  I) over the atomic volume 9. Instead of the Madelung potential 
change we shall use throughout the corresponding change of the electron potential 
energy AVc = -AV, .  \?'e have 

E.  In' = p  I, d r A V c ( I r + R . I ) .  (10) 

Equations (9) and (10) have a simple electrostatic meaning. To first order in AZ' the 
interaction energy is determined by the work done in creating the additional defect with 
charge AZ' against the Coulomb potential AV,of  the single impurity. 

The integral over the atomic sphere in equation (10) is calculated numerically by 
introducing polar coordinates ( r ,  8, @) and by using the Gauss-Legendre and the Gauss- 
Chebyshev integration rules for the 8- and @-integrations, respectively, whereas the 
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Figure 1. Electron density changes due to (a) 4d 
and (b) 5sp impurities in Ag: the vertical line 
indicates the first-neighbour distance. 

Figure 2. Changes in the electrostatic potential 
AV,(r) due to (a) 4d and (b) 5sp impurities in 
Ag: the vertical line indicates the first-neighbour 
distance. 

radial integration is performed by the repeated Simpson's rule 1161. An approximate 
formula for E,,, can be derived by expanding the potential in a Taylor series aroundR,,. 
For symmetry reasons the first-order term, which is proportional to the gradient of the 
potential. vanishes. The second-order term which contains the second derivatives of the 
electrostatic potential can be evaluated using the Poisson equation relating AV,(r) to 
the perturbed electron density Ap(r) .  The third-order term again vanishes. Thus. up to 
third order the solute-vacancy interaction energy is given by 

E,,, = A V J R , , )  - ( h i s )  rz A d R , ) .  (11) 
This equation gives interaction energies which are qualitatively correct. Quantitatively 
it is, however, not reliable. 

3. Results and discussion 

Firstly we self-consistently calculate the electronic structure of the single substitutional 
impurities in Cu and Ag, In order to minimize lattice relaxation effects. which are not 
includedin thecalculation, weonlyconsiderimpuritiesfromthesame rowofthe periodic 
table as the host, i.e. 3d and 4sp impurities in Cu and 4d and Ssp impurities in Ag. An 
angular momentum cut-off I,,, = 3 and a range of the perturbing potential S = 10au 
are sufficient to obtain adequate convergence in all cases examined. Charge neutrality 
within the sphere of radius S is never violated by more than a few hundredths of an 
electron, and Friedel's sum rule is satisfied to within a few per cent. 

Figures l(a) and l(b) show the changes in the electron.demities.due to.$d and 5sp 
impurities, respectively, in Ag. The3d and 4sp impurities, respectively, in Cu exhibit a 
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Figure 3. Interaction energies between an 
impurity and a vacancy at first-neighbour sites in 
(a) Cu and (b) Ag as calculated by the jellium 
model (-) and the resultsobtained by the KKR 
Green function method (---): A ,  .. spin-pol- 
arized solutions. 

' -02 o r y  
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similar behaviour [ll]. Outside the impurity atomicsphere the perturbed density Ap(r) 
is an oscillatory decreasing function. For a Pd impurity in Ag the nearest-neighbour 
distance RI = 5.50au lies in a shallow valley of Ap. This valley deepens and shifts 
outwards for impurities in the sequence Pd to Sr. Thus, for Ru we have Ap(R,) = 0, 
whereas for the early 4d impurities there is a positive density change at the nearest- 
neighbour distance which strongly increases with increasing valence difference. In the 
case of 5sp impurities in Ag we observe for Cd and In a shallow minimum near R I  which 
deepens and shifts inwards for the higher-valency impurities. From these results it is 
clear that theThomaoFermi approximation fails to describe the charge density changes, 
sinceit yields apositive and exponentiallydecreasingcharge densityfor thespimpurities. 
Thus, the approach of Lazarus [I] and Le Claire [2] for the interaction energies is 
unjustified and the reasonably good agreement obtained with experiment is accidental. 

In figures 2(a) and 2(b) we show the changes in the electrostatic potentials AV,(r) 
induced by 4d and Ssp impurities, respectively, in Ag. The 3d and the 4sp impurities, 
respectively, in Cu exhibit a similar behaviour [ll], We observe that the perturbation 
of the electrostatic potential tends to zero by oscillating away from the impurity. For the 
4d impurities the oscillations of AV, start below R ,  and the first maximum is raised up 
and shifts inwards in the sequence SI to Pd. The value of AV, at the nearest-neighbour 
distance is always positive and largest for Zr, where the maximum occurs very close to 
R,. On the contrary, for the 5sp impurities the Coulomb potential is more attractive 
thanforthereferencesystem(an AgimpurityinanAgjellium)uptoR,.Thus, AVc(R,) 
is always negative in the case of 5sp impurities in Ag and roughly scales with the valence 
difference (figure 2(b)). 

Figures 3(a) and 3(b) show the interaction energies between an impurity and a 
vacancy at first-neighbour sites in Cu and Ag hosts, respectively, calculated from 
equation (10). Negative energies mean attraction and positive energies repulsion of the 
two defects. In the same figure we also report the results obtained by the KKR Green 
function method [lo, 111. It is seen that both approaches give quite similar trends. The 
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deviations essentially arise from the host band structure and especially the host d band 
which cannot be taken into account in the jellium model. 

For the sp impurities. one obtains an attraction roughly proportional to the valence 
difference AZ. Thisconclusion could be reached very simply by considering the vacancy 
as thestrongdefect and thespimpurityasaperturbation. Ancarlyspimpuritywith,for 
example, AZ' = t 1, t 2  can be obtained by firstly removing the positive background 
charge density from the sphere (Itn, rJ and then by uniformly spreading the ionic charge 
of the impurity within this sphere. Thus, in analogy to equation (lo), one obtains that 
E,,, is proportional to AZ'. The proportionality constant is equal to minus the average 
of the self-consistent electrostatic potential due to a single vacancy over the sphere (Rm, 
r J .  For a first-neighbour position in Cu (Ag) we find this proportionality constant to be 
-0.07 eV (-0.03 eV). These values are in good agreement with the results obtained 
by considering the all-electron sp impurity as the strong defect and the vacancy as 
perturbation (see figure (3)). 

However, contrary to the KKR results, where the interaction energy varies more or 
less linearly as a function of AZ for almost all the sp impurities. we find that, except for 
impurities with AZ = i- 1. there are strong deviations from this linear behaviour. The 
almost linear behaviour found in the KKR calculations for larger AZ-values is very 
probably due to p impurity-d host hybridization, which is very appreciable for the 
multivalent impurities. Note that the deviations from the jellium results are larger in Cu 
than in Ag, because the d band of Ag is lower in energy and correspondingly the d 
electronsare more strongly localized, so that thep-d hybridization is weaker. Therefore, 
the jellium results are somewhat more appropriate for Ag than for Cu. 

For non-magnetic transition-metal impurities the interaction is repulsive and shows 
a parabolic behaviour with a maximum in the middle of the series. In the presence of a 
vacancy the virtual bound state of a nearby impurity becomes narrower owing to the loss 
of hybridization which then explains the loss of bonding and the repulsion from the 
vacancy. The parabolic behaviour of the interaction energy is a band-filling effect and is 
qualitatively very similar to that of the cohesive energies of elemental transition metals 
as explained by Friedel 1191. For the early d impurities, only the lower bonding parts of 
the virtual bound state are occupied whereas. for the later d impurities. also the higher 
antibonding states are filled, If we allow for spin polarization. the calculation for V, Cr, 
Mnand Fe impuritiesin Cuconverges to a magneticsolution. The presence of a vacancy 
on a neighbouring site reduces thc hybridization of the 3d impurity orbitals with the host 
states and this leads to an enhancement of the local moment. The corresponding gain of 
exchangeenergy, which becomeslarger as the impurity moment increases, partly cancels 
the loss of bonding close to the vacancy, thus explaining the reduced repulsion of the 3d 
impurities in Cu in the spin-polarized calculation. 

Thiseffect can be alsoexplained in terms of the change in the electrostatic potential. 
Indeed. as shown in figure 4, the repulsive potential AV,(r) for V, Cr, Mn and Fe 
impurities in Cu is strongly reduced near the first-neighbour site if we take spin polar- 
ization into account. 

As can be seen from figure 3, our calculation yields a somewhat larger 'magnetic' 
reduction in the interactionenergyfor VandCr impurities than the ~ K ~ r e s u l t s ,  whereas 
for Mn and Fe impurities this reduction is somewhat underestimated. This can be 
explained as follows. In a realistic electronic structure calculation the hybridization 
between the low-lying host 3d and the impurity 3d states repels the impurity d states to 
higher energies [20]. As a result. for an impurity with a less than half-filled d shell the 
local density of states at EF decreases. This leads finally to a smaller magnetic moment 
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r mu.) 
Figure 4. Changes in the electrostatic potential AV.(r) due to magnetic 3d impurities 
in Cu: the vertical line indicates the first-neighbour distance; -, spin-polarized calcu- 
lation; ---, non-spin-polarized calculation. 
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Y 

Figure 5. Interaction energies between an 
impurity and a vacancy at second-neighbour sites 
in Cu: ., spin-polarized solutions. 

-0.02- 
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and consequently to a smaller reduction in the interaction energy compared with the 
resultsof a jelliumcalculation, where the low-lyinghost 3dstatesare neglected. Similarly 
in our calculation, for an impurity with a more than half-filled d shell, the lack of host 
d-impurity d hybridization leads to  an underestimation both of the impurity moment 
and of the reduction in the solute-vacancy interaction. 

Comparison with experiments is rather difficult since very few reliable data on the 
vacancy-solute interaction exist. However, a detailed comparison between KKR results 
and the available experimental information has been reported by Klemradt er a[ [ll]. 
Thus, we shall not attempt here a discussion of our results in connection with the 
experiment, since they agree reasonably well with those obtained by the KKR method. 
Despite the difficulties in estimating solute-vacancy interaction energies from various 
measurements there is overall agreement between theoretical results and experimental 
data deduced from diffusion, positron annihilation and perturbed angular correlation 
experiments. 

When vacancies occupy sites further away than the first-neighbour sites of the 
impurity, we find that the interaction becomes very small, in agreement with the KKR 
results [10,11]. In figure 5 we show the solute-vacancy interaction energies for second- 
neighbour positions in a Cu matrix. The curve obtained is similar to that in figure 3 
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corresponding to first-neighbour interaction, but it is typically ten times smaller in scale 
and shifted towards the first elements of the periodic table row. We find also that 4sp 
impurities are attracted by the vacancy and that the solute-vacancy interaction energy 
for early 4sp impurities is proportional to the valence difference A Z  as it is in the case 
where the vacancy is first neighbour to the impurity. The proportionality constant is 
found to be -0.005 eV (see figure 5). If we treat the vacancy as the strong defect and 
the sp impurity as the perturbation, we calculate this proportionality constant to be 
-0.003 eV. 

Theoverallagreement betweenour resultsand thoseofKKR totalenergycalculations 
shows that the first-order approximation (10) for the interaction energy is sufficiently 
accurate. 

In the approach of Blandin and co-workers [3] the vacancy was created by super- 
imposing a point charge AZ' = - 1 on the jellium positive background at point R,. This 
leads to an interaction energy equal to AVc(&) (see equation (9)). However, we 
demonstrate here that averaging thepotentialovera neighbouringatomicsphere accord- 
ingtoequation(10)isquiteimportant. Forinstance,forthe3dimpuritiesinCu3 AVc(R,)  
has its maximum for Ti (0.41 eV) whereas E,,, is maximal for Mn (0.19 eV) in the non- 
spin-polarized calculation and has a value of 0.08eV for Ti. Similarly, for the 4d 
impurities in Ag, AVc(R, )  has its maximum value for Zr (0.46eV) whereas E,,, is 
maximum for MO (0.24 eV) and has a value of 0.13 eV for Zr, These differences can be 
explained by using the approximate formula (11) for the interaction energy. Indeed, 
owing to thestrongcharge perturbations A p ( R  ,)for theearly transition-metal impurities 
(see figure l(a)), AV,(r) deviates for smaller distances considerably from its value at R I  
(see figure 2(a)). On the contrary, for the sp impurities the corrections to the point 
charge model are not very important, since thecorrespondingperturbedcharge densities 
A p ( R , )  are much smaller. Moreover. Blandin and co-workers [3] derived AVJR, )  from 
the asymptotic form of charge-density oscillations [5] using a rough estimate for the 
impurity phase shifts in which they supposed that the impurity is screened only by d 
electrons. This derivation of AVc@,) is not sufficiently accurate. We have shown that 
the asymptotic form of the Friedel oscillations is not valid at the first-neighbour distance 
and the neglect of sp screening leads to errors as large as 30% in the d-phase shifts for 
3d impurities in Cu [21]. 

4. Conclusion 

We performed self-consistent calculations within the framework of the local-spin-den- 
sity-functionaltheoryfor theinteractionenergiesofvacancies with3dand4spimpurities 
in Cu as well as with 4d and 5sp impurities in Ag. The calculations are based on the 
jellium model and first-order perturbation theory. The resultsobtained are in agreement 
with those calculated by first-principles methods and show the observed experimental 
trends. This model provides a very simple explanation of the interaction in terms of the 
electrostatic potential of the single impurity. We have also shown that a consistent and 
reliable calculation of this potential is required. The close agreement with the experiment 
foundinearliercalculations[1-4] ismoreor lessaccidentalanddue toerrorcancellations 
of the different unreliable approximations involved. 
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